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Hydroxylation by cytochrome P450 enzymes is one of the most ot T 0Ty Q=029
20 (PorfFe(SMe)

important processes in drug metabolisfA detailed under-
standing of its mechanism is vital for predicting biotransformations
of pharmaceuticals and other xenobiotics, and hence for drug
development. Following our previous studies of mechanisms and
substituent effects in flavin-based aromatic hydroxylatiame here
consider P450 hydroxylation of aromatic compounds on the basis
of accurate density functional theory (DFT).

The rate and selectivity of P450 substrate oxidation is determined
by many factors, such as the nature of the rate-limiting step,
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docking-related steric effeétand intrinsic electronic reactivity. AN
There has been intense experimeéhaald theoreticdlwork on the Qo= 064,
mechanism of aliphatic P450-mediated hydroxylation, but aromatic Prercans™ 000 —
hydroxylation is less well understood. The first step in the (pu)Feé%Q.\;ﬁ"

mechanism is addition of the active iron-oxo species (“compound
I") to a substrate carbon to give a tetrahedral intermediate. 21 18 17 15 1.3
Subsequent rearrangement to the phenol product can proceed Raaction Caordinate d(C-C) [4)

directly or via an epoxide. While aliphatic hydroxylation proceeds Figure 1. UB3LYP/BS [ energy profile for the addition of compound |

via radical intermediates. it is not clear whether the tetrahedral © benzene, showing the model system, the transition-state structure and
int diate i ti ’ hvd lati h dical tioni product structure. Energies are relative to the separated reactants. Group
Intermediate 'n_ aroma '_C y_ roxylation has _ra ica Or_ ca _'On'c charge densitiesq) and spin densitiesof for benzene are shown.
character. Previous semiempiritahd local density approximation

(LDA)* calculations on the reaction mechanism provide only and charge transferred to the substrate. The activation energies

(=]

qualitative insight into these questions.

Our DFT computatiorid use the B3LYP functional, which gives
accurate results in studies of aliphatic P450 reactivig, well as
for other porphyri#? and bioinorganic systenid We address first

presented here are similar to those computed for the epoxidation
of ethené® and slightly lower than for hydroxylation of €H
bondgaPein alkanes.

We also considered further reactivity by locating transition states

the reaction pathway for hydroxylation of benzene itself. Compound for rearrangement of the tetrahedral adduct to a complex of the

I has several close-lying electronic statésyith the ground state
a quasi-degenerate pair of triradicaloid states, lab@egand?A,,,

which differ only in the spin coupling of their three unpaired
electrons, two of which reside on the iron-oxo moiety, the other

residing in a porphyrint orbital. We optimized the geometry of

the model system at a set of fixed-@ distances between benzene
and the oxygen atom of compound | (in different electronic states).
The lowest-energy pathway (3 kcal/mol below the next lowest),

was found to be an electrophilic addition leading from #e,

ferric P450 system with benzene epoxide or the ketone tautomer
of phenol (this is the “NIH shift®® product). These very low barriers
to product formation lie only 8.0 and 2.4 kcal/mol above the
tetrahedral intermediate, respectively, so that@bond formation
between compound | and the substrate is predicted to be the rate-
and selectivity-determining step.

We next addressed substituent effects by considering first
addition to the meta and para positions of a series of monosubsti-
tuted aromatics. For some of these substrates, the mechanism studied

state of compound | to a purely cationic tetrahedral intermediate here may not be metabolically significant as P450 oxidation may
(Figure 1). The corresponding transition state was then optimized haye a different rate-limiting step or follow a different route (e.g.,

and confirmed by frequency analysis.

side-chain oxidation). However, the present preliminary set of

also illustrates the model system used (neutral;A¢1,,0 in the

and thereby provides useful insight. The lowest route again goes

benzene case), with the protein cysteinato side chain described bythrough a transition state with mixed radical/electrophilic properties
a methyl mercaptide group, and the porphyrin devoid of side chains. and leads to cationic adducts, although in the case of the electron-
During addition, two electrons of the substrate are transferred into withdrawing substituents, a radical-like state of the adduct lies

two singly occupied orbitals of compound I, the porphyrinabital

slightly lower in energy than the cationic one. Whereas the barrier

and thellL;* orbital on the FeO moiety. Charge and spin density hejghts with substituents in the meta position are all very similar

analysis demonstrate a wholly cationic nature for the final 1o thatin benzene, both electron-withdrawing and -donating groups
tetrahedral adduct, but the electronic structure of the transition stategecrease the barrier height for addition in the para position.

is of a mixed cationic and radical nature, with considerable spin
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Finding correlations between our computed energy barriers and
known substituent propertitsis a first step toward developing a
quantitative structureactivity relationshipt” Despite the radical-

10.1021/ja035590q CCC: $25.00 © 2003 American Chemical Society
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18 be of great value to researchers interested in this crucial area of
bioinorganic oxidation.
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Figure 2. UB3LYP/BS II1! activation energies for para addition to
monosubstituted benzenes, versus a combination of the substituent radicat
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